Digital Forensics

Ravitha Rajalakshmi.N Asst.Prof (Sr.Gr) PSG college of Technology

Digital Forensics

Cybercrime - any criminal offence that involves computer / network or ECD where the computer is used to either commit the crime or is the target of the crime.

Digital Forensics is the process of identifying, preserving, analyzing and presenting **digital** evidence in a format that is legally acceptable.

Proactive & Reactive

Forensic Investigation Process

IDENTIFICATION

Identify the system to be investigated

DATA ACQUISITION/ PRESERVATION

Taking images of the drives/partition belonged to the identified system

PRESENTATION

Reporting of evidences found during analysis phase.

FORENSIC ANALYSIS

Analyze digital artifacts inside the data for evidences

DATA RECOVERY

Recover deleted data from the image files

Identification

Storage Devices

Source: https://www.corsair.com/tw/zh/blog/voyager-air-firmware-june2013

Data Acquisition and Preservation

- Holistic capture and preservation of the evidence is required
- Transfer the contents to another empty media storage
- Maintain integrity of the copy (Transfer is complete) Copy is an exact replica of the original media
- Chain of Custody is maintained

Chain of Custody - log for the digital evidence

Hardware Write Blockers

Source: https://en.wikipedia.org/wiki/File:Portable-forensic-tableau.JPG

A disk image is a bit by bit copy of a full disk or a single partition from a disk. Because the contents of a disk are constantly changing on a running system, disk images are often created following an intrusion or incident to preserve the state of a disk at a particular point in time.

Physical Disk

Methods for creating Forensic Image

Disk Image File Formats

- Raw Imaging Format
- AFF (Advanced Forensic Format)
- Encase Evidence File Images (Express witness format E01(EWF))

Data Metadata

Raw Image Format (.raw , .dd , .img)

Independent of any forensic package

Contd ..

Encase File Format

Header: Contains Case Information	Data Block	CRC	Data Block	CRC	Data Block	CRC	MD5	
--	---------------	-----	---------------	-----	---------------	-----	-----	--

Tools for acquisition

dd Command line utility for acquiring digital images
 dd if=<media/partition on a media> of=<image_file>
 Example: dd if=/dev/sdc of=image.dd
 dd_rescue
 Imaging potentially failing media
 dd_rescue <input file> <out file>
 Example: dd_rescue /dev/sdc image.ddrescue
 dcfldd Provides additional features

dcfldd <options> if=<input media> of=<image file>

Example:

dcfldd if=/dev/hdc hash=md5 hashwindow=10G md5log=md5.txt hashconv=after bs=512 conv=noerror,sync split=10G splitformat=aa of=image.dd

Forensic Analysis

- Data Recovery
 - Recover and analyze deleted files that have not been overwritten
 - Carving unallocated and slack space
- String and Keyword Searching
 - Identify text within a binary file
- Volatile Evidence Analysis
 - Provides details about the state of the system
 - Applications used by the suspect
 - Connections, processes and cache tables gathered from RAM
- Timeline Analysis
 - Creates timeline of events
- System file analysis
 - Any unauthorized changes that are made to system binaries

Kali linux

open source linux distribution specially tailored for digital forensics

- Binwalk
- Autopsy
- Bulk_extractor
- DFF
- md5deep
- Volatility
- Volafox
- chrrootkit

Tools	Purpose	
Autopsy	Examine file system in an non-intrusive manner	
Binwalk	Search given binary image for embedded files and executable code	
Bulk-Extractor	Extract features such as email-address, credit card numbers, URLs and other type of information from digital evidence files.	
DFF	Digital Forensic Framework Collect, Preserve and reveal digital evidences without compromising system and data	
Guymager	Media acquisition	
Foremost	Recover lost files based on headers, footers and internal data structures	
md5deep	Verify the integrity of the file	
Volatility	Extraction of digital artifacts from RAM (Random Access Memory)	
chkrootkit	Check the system for common rootkits	

Kali linux distribution is booted as a virtual machine inside Virtual Box.

Virtual Appliance - pre-configured operating system

Choose the kali linux ova file located in the local directory and click Import

Start the virtual machine

Default username : root

Password: toor

All the necessary Images are available in /root/Documents/Images

Forensic Analysis- Autopsy Sleuth Kit

Layers of Data Organization

Disk Layer

Physical storage device Analyzing information at this level is bit complex

Track - concentric circle that stores information
Sector - section of track with specified size
Cylinder - column of track across platter
Sector - physical address / firmware

File system Layer

Metadata specific to file system Describes the layout of files

Volume is organized effectively by file systems

Partition Layer

Disk is divided into partitions Each partition/volume can use different file system

Block Layer

Actual Data resides in a block

Sleuth kit tools

Layer	Tools	Purpose
Image File	img_stat	Display information about a disk image
	img_cat	Dump the entire bitstream of disk image (Removes wrapper if using EO1 , AFF)
Volume System	mmls	Display partition layout of a volume system
	mmstat	Display information about volume system
	mmcat	Dump the entire bitstream of a partition
File System	fsstat	Display file system layouts Layout , sizes , labels
File Name	fls	List allocated and unallocated file entries
	ffind	File entries of a given metadata

Contd ..

Layer	Tools	Purpose
Metadata	ils	List metadata structure and their contents
	ifind	Find metadata structure referred by a file name entry
	istat	Display information about a specific metadata structure
	icat	Extract data units of a file specified by metadata structure
Data Unit	blkls	List details about data units (unallocated)
	blkstat	Display information about specific data unit
	blkcat	Extract contents of a data unit
	blkcalc	Calculate location of where data in unallocated space exist

Contd ..

Layer	Tools	Purpose
Additional tools	tsk_loaddata	Extract metadata into a SQLite database
	tsk_recover	Extract allocated or unallocated files from a disk image
	mactime	Create timeline of activity
	sorter	Sorts files based on type

Organization of data

Real - time Analysis

Case study 1: Deleted File Identification and Recovery

To recover deleted file from raw image able2.dd

- Analyze the Image
- 2. Display the partition table
- 3. Identify the sector offset for second partition
- 4. Display the file system
- 5. List files
- 6. Identify delete files
- 7. Recover the image corresponding to inode entry 11108
- 8. Recover the deleted file corresponding to inode entry 2139
- 9. Identify the type of the deleted file

Real - time Analysis

Case study 2: Physical String Search and Allocation Status

- 1. Identify the byte locations which contains string "Cybernetik"
- 2. Find the sector to which byte corresponds to
- 3. Identify its partition
- 4. Calculate byte offset within partition
- 5. Find the block number
- 6. Get the status of the block
- 7. Identify inode entry
- 8. Using the inode number recover the contents

Real time analysis

Case study 3: Speed up the String search by extracting the unallocated block

- Extract unallocated blocks of the partition
- 2. Search keyword inside the block
- 3. Identify the block in extracted unallocated blocks
- 4. Find the actual block offset in partition
- 5. Get the status of the block
- 6. Identify inode entry
- 7. Using the inode number recover the contents

Task 1

Identify deleted files in dfr-01-fat.dd

Unzip the folder to get the flag flag.zip

Hint is in the figure hex_editor.png

What is hidden in the image?? flag.png

Find the flag in raw image animals.dd

Test Images

- 1. Computer Forensic Reference Datasets https://www.cfreds.nist.gov/
- 2. Digital Corpora https://digitalcorpora.org/corpora/disk-images
- 3. Digital Forensic Tool Testing Images http://dftt.sourceforge.net/
- 4. LinuxLeo https://www.linuxleo.com

Competition links:

- 1. https://picoctf.com/
- 2. https://dfrws.org/dfrws-forensic-challenge

Tutorial

dcfldd options

- split=<bytes> Specifies the size of each of the output image files.
- vf=<file> Specifies the image file that needs to be verified against the input.
- splitformat=<text> Specifies the format for multiple image files when using splitting.
- hash=<names> Specifies one or more (a comma-separated list) of hash algorithms, such as md5, sha1, etc.
- hashwindow=<bytes> Specifies the number of bytes of input media for calculation of hash.
- - log=<file> Specifies output files for hash calculations of a particular hash algorithm">- log=<file> Specifies output files for hash calculations of a particular hash algorithm.
- conv=<keywords> Specifies conversions of input media according to a comma-separated list of keywords, such as noerror (continue after read errors), ucase (change lower to upper case), etc.
- hashconv=before|after Specifies the hash calculation before or after the specified conversion options.
- bs=<blook size> Specifies the input and output block size.