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Machine Learning

Constructing models that learn from and make 
predictions on data

• Deriving Knowledge from data

• Supports wide range of applications

• Data ?
– Complexity (Structure)

– Size 



Trends

• Rapid growth of Massive datasets
– Genomics

– Online user activity

– Data from sensors

• Pervasiveness of distributed and cloud 
computing Infrastructure
– Provide Storage and computational resources for 

processing



Applications

• Recommendation systems

• Spam Filtering

• Speech Recognition

• Face Recognition

• Link Prediction

• Protein Structure prediction (given acid 
sequence -> 3d protein structure)



Terminologies – Machine Learning

• Learn from observation

• Observations – items / entities used for 
learning

• Features /estimators– attributes used to 
represent the observation

• Labels – categories assigned to the 
observations.



• Training and Test Data : Observations used to 
train and evaluate the learning algorithm
– Training Data: Provided to algorithm for training

– Validation Data : Test data is used to evaluate the 
model



Common Learning Settings

• Supervised : Learns from labeled observation
– Find the mapping from observations to labels.

• Unsupervised :Learn from unlabeled 
observation
– Find latent structure from features alone and 

groups the observations
– Find Hidden Patterns
– Could be employed as preprocessing stage for 

supervised classifier



Machine Learning – Virtually Applied 
Everywhere



Machine Learning Algorithms 



Challenge

• Scalability for common machine learning tasks

• To deal with massive datasets
– Distributed Machine Learning algorithms

– Data preprocessing technique 



Why Distributed Computing ??

• Why can’t Traditional Tools (Matlab, R, Excel) 
cannot be used for processing large datasets
– They typically run on single machine.

– Need more hardware to store / process data



What Options ??

• Scale – up the machine (large machine)
– Good Idea ! Actually it works faster

– But need Specialized hardware (expensive)

– Scaling can be done to a certain extent



• Scale out
– Many small machine connected them over 

network in distributed setting
• Better alternative , as nodes can easily be added

• Commodity hardware

• Network Communication , Software Complexity



Apache Spark

• Open source cluster computing engine

• Why spark for large scale machine learning?
– Fast iterative computation

– Communication primitive

– Provides API for scala, python and java

– Interactive shell

– Many high level libraries are available for building 
machine learning pipelines



Components of Spark



• Spark core , RDD API – low level access to 
spark functionality

• MLlib, Streaming, GraphX , DataFrames API 
and SparkSQL – high level operation (top of 
RDD API)



Resilient distributed Datasets

• Collection of objects distributed across the 
cluster. (Divide them into partitions and 
distribute it across nodes)

• In order to manipulate the data, two 
operations are typically supported: action and 
transformation.



• Apache Spark uses lazy evaluation

• Action causes execution to begin. Launch 
spark jobs and related transformations are 
computed.

• Otherwise the operations are represented in a 
Directed acyclic graph



Data Lineage



Typical Workflow in Spark

• Driver creates DAG (Directed Acyclic Graph) 
for work to be done and sends it to the worker 
nodes in the cluster . Cluster will return results 
to driver program



Create RDD in Python

• Calling parallelize method on spark context

wordRDD=sc.parallelize([“cats”,”dogs”,”fish”]
)

• Create RDD from local text file

wordRDD=sc.textfile(“/path/to/ReadMe.md”)



MLlib

• Machine learning package available in Spark.

• It is shipped with Spark 0.8.

• Started as a project in UC Berkeley AMPLab.

• It consists of common learning algorithms and 
utilities including classification, regression, 
clustering, collaborative filtering, 
dimensionality reduction.



Why MLlib?

• Scalability

• Better Performance

• Usability



MLlib

• Machine learning has to be easy and scalable
–  Capable of learning from large datasets.

– Easy way to build machine learning applications.
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Model

Learning Algorithm
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Apply Model Error ??
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Random Forest Classifier

• Ensemble of decision trees

• Decision Trees
– Simple means of inducing rules

• if  (Age is x) and (income is y) then sanction loan



Sample Decision Tree



How attributes are selected ?

• Using Metrics
– Information Gain

– Entropy

Age

Age Income Label

Middle High Yes

Middle Low Yes

Old High No

Old Low No

Yes No

Middle Old

Entropy = 0

Income

? ?

High low

Entropy = 1



Random Forest classifier

• Problem with decision tree
– Overfits the training data

Outlook Temperature Play_Tennis

Tuple1

Tuple 4

Tuple 8

Temperature Wind Play_Tennis

Tuple 2

Tuple 5

Tuple 8

Tree 1

Tree 2



Train & Test Model

Tree 1

Tree 2

Tree 3

Test Tuple

Prediction 1

Prediction 2

Prediction 3

Majority Voting



Data

• Mllib supports different datatypes (local)
– Vectors (columnar values)

• Sparse

• Dense

– LabeledPoint
• associate label with a vector

• label field          ---- > double value

• features field    ---- > Vector

from pyspark.mllib.regression import LabeledPoint
pos = LabeledPoint (1.0, [1.0,0.0,3.0])



Mllib Package

• Random Forest Classifier
–  pyspark.mllib.tree
– import RandomForest, RandomForestModel

• Train
– model = RandomForest.trainClassifier (Data,

numClasses =2, 
CategoricalFeatureInfo{ Map(0->2,4>10)},
featureSubsetStrategy =“auto”, 
impurity=“gini”,
maxDepth=4,
maxBins=32,
numTrees=3)



• Problem Specification Parameters
– Algorithm

– numClasses

– categoricalFeaturesInfo

• Stopping Criteria
– maxDepth

– minInstancesPerNode

– minInfoGain

• Tunable Parameters
– Impurity



Testing Model using MLlib

• testdata – dataset with many tuples

• predictions=model.predict(testdata.map(lamb
da x:x.features)

• labelsAndPredictions=testdata.map(lambda 
lp:lp.label).zip(predictions)



Evaluation

• testErr=labelsAndPredictions.filter(lambda 
(v,p) : v!=p).count() / float(testData.count())

• print(‘Test Error = ‘ + str(testErr))

• model.save(sc,”MyModelPath”)

• sameModel = 
RandomForestModel.load(sc,”MyModelPath”)



K-means Clustering

• Most Commonly used Clustering algorithm

• partition n observations into k clusters in 
which each observation belongs to the cluster 
with nearest mean, serves as the model of the 
cluster

• It works only with numerical attributes









Algorithm

• Runs iteratively

• Starts with initializing number of clusters and 
the cluster center
– Assign data points to clusters

– Recompute cluster centre

– Repeat steps till error metric is reduced to a 
threshold



Mllib package- clustering

• Kmeans input data:
– Vector
– To create vectors , numpy package could be used

from numpy import array

data = sc.textFile("data/mllib/kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x) 

for x in line.split(' ')]))



• Train Model :

clusters = KMeans.train(

parsedData, 2, 

maxIterations=10,

        runs=10, 
initializationMode="random")



• Test Model  

def error(point):

    center = 
clusters.centers[clusters.predict(point)]

    return sqrt(sum([x**2 for x in (point - 
center)]))



WSSSE = parsedData.map(lambda point: 
error(point)).reduce(lambda x, y: x + y)

print("Within Set Sum of Squared Error = " + 
str(WSSSE))

• # Save and load model

clusters.save(sc, "myModelPath")

sameModel = KMeansModel.load(sc, 
"myModelPath")



MLlib

• Machine learning has to be easy and scalable
–  Capable of learning from large datasets.

– Easy way to build machine learning applications.



Machine Learning Workflow

• Scalable  --  Expandable (it should work even if 
the data grows enormously)

• Machine learning pipeline components
– Feature Extraction

– Supervised Learning

– Model Evaluation

– Exploratory data analysis



ML workflow

• Why do we need ML workflow

Load Data

Extract features

Train Model

Evaluate



Text Classification

• Given text predict its topic







Problems with Mllib

Create many RDDs

retrieve words from text
convert  it to features (new )

Explicit Zip
associate data point with features







Next Biggest Challenge





Input 
Dataset

Hashing Tf (1000) Hashingtf(5000)
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