
Practical machine Learning with
MLlib

By
N.Ravitha Rajalakshmi
Assistant Professor
PSG College of Technology

Machine Learning

Constructing models that learn from and make
predictions on data

• Deriving Knowledge from data

• Supports wide range of applications

• Data ?
– Complexity (Structure)

– Size

Trends

• Rapid growth of Massive datasets
– Genomics

– Online user activity

– Data from sensors

• Pervasiveness of distributed and cloud
computing Infrastructure
– Provide Storage and computational resources for

processing

Applications

• Recommendation systems

• Spam Filtering

• Speech Recognition

• Face Recognition

• Link Prediction

• Protein Structure prediction (given acid
sequence -> 3d protein structure)

Terminologies – Machine Learning

• Learn from observation

• Observations – items / entities used for
learning

• Features /estimators– attributes used to
represent the observation

• Labels – categories assigned to the
observations.

• Training and Test Data : Observations used to
train and evaluate the learning algorithm
– Training Data: Provided to algorithm for training

– Validation Data : Test data is used to evaluate the
model

Common Learning Settings

• Supervised : Learns from labeled observation
– Find the mapping from observations to labels.

• Unsupervised :Learn from unlabeled
observation
– Find latent structure from features alone and

groups the observations
– Find Hidden Patterns
– Could be employed as preprocessing stage for

supervised classifier

Machine Learning – Virtually Applied
Everywhere

Machine Learning Algorithms

Challenge

• Scalability for common machine learning tasks

• To deal with massive datasets
– Distributed Machine Learning algorithms

– Data preprocessing technique

Why Distributed Computing ??

• Why can’t Traditional Tools (Matlab, R, Excel)
cannot be used for processing large datasets
– They typically run on single machine.

– Need more hardware to store / process data

What Options ??

• Scale – up the machine (large machine)
– Good Idea ! Actually it works faster

– But need Specialized hardware (expensive)

– Scaling can be done to a certain extent

• Scale out
– Many small machine connected them over

network in distributed setting
• Better alternative , as nodes can easily be added

• Commodity hardware

• Network Communication , Software Complexity

Apache Spark

• Open source cluster computing engine

• Why spark for large scale machine learning?
– Fast iterative computation

– Communication primitive

– Provides API for scala, python and java

– Interactive shell

– Many high level libraries are available for building
machine learning pipelines

Components of Spark

• Spark core , RDD API – low level access to
spark functionality

• MLlib, Streaming, GraphX , DataFrames API
and SparkSQL – high level operation (top of
RDD API)

Resilient distributed Datasets

• Collection of objects distributed across the
cluster. (Divide them into partitions and
distribute it across nodes)

• In order to manipulate the data, two
operations are typically supported: action and
transformation.

• Apache Spark uses lazy evaluation

• Action causes execution to begin. Launch
spark jobs and related transformations are
computed.

• Otherwise the operations are represented in a
Directed acyclic graph

Data Lineage

Typical Workflow in Spark

• Driver creates DAG (Directed Acyclic Graph)
for work to be done and sends it to the worker
nodes in the cluster . Cluster will return results
to driver program

Create RDD in Python

• Calling parallelize method on spark context

wordRDD=sc.parallelize([“cats”,”dogs”,”fish”]
)

• Create RDD from local text file

wordRDD=sc.textfile(“/path/to/ReadMe.md”)

MLlib

• Machine learning package available in Spark.

• It is shipped with Spark 0.8.

• Started as a project in UC Berkeley AMPLab.

• It consists of common learning algorithms and
utilities including classification, regression,
clustering, collaborative filtering,
dimensionality reduction.

Why MLlib?

• Scalability

• Better Performance

• Usability

MLlib

• Machine learning has to be easy and scalable
– Capable of learning from large datasets.

– Easy way to build machine learning applications.

 Classifier - Phases

Model

Learning Algorithm
Training Set

Validation set
Apply Model

Model

Learning Algorithm
Training Set

Validation set
Apply Model

 Training Phase

Model

Learning Algorithm
Training Set

Validation set
Apply Model Error ??

Testing Phase

Random Forest Classifier

• Ensemble of decision trees

• Decision Trees
– Simple means of inducing rules

• if (Age is x) and (income is y) then sanction loan

Sample Decision Tree

How attributes are selected ?

• Using Metrics
– Information Gain

– Entropy

Age

Age Income Label

Middle High Yes

Middle Low Yes

Old High No

Old Low No

Yes No

Middle Old

Entropy = 0

Income

? ?

High low

Entropy = 1

Random Forest classifier

• Problem with decision tree
– Overfits the training data

Outlook Temperature Play_Tennis

Tuple1

Tuple 4

Tuple 8

Temperature Wind Play_Tennis

Tuple 2

Tuple 5

Tuple 8

Tree 1

Tree 2

Train & Test Model

Tree 1

Tree 2

Tree 3

Test Tuple

Prediction 1

Prediction 2

Prediction 3

Majority Voting

Data

• Mllib supports different datatypes (local)
– Vectors (columnar values)

• Sparse

• Dense

– LabeledPoint
• associate label with a vector

• label field ---- > double value

• features field ---- > Vector

from pyspark.mllib.regression import LabeledPoint
pos = LabeledPoint (1.0, [1.0,0.0,3.0])

Mllib Package

• Random Forest Classifier
– pyspark.mllib.tree
– import RandomForest, RandomForestModel

• Train
– model = RandomForest.trainClassifier (Data,

numClasses =2,
CategoricalFeatureInfo{ Map(0->2,4>10)},
featureSubsetStrategy =“auto”,
impurity=“gini”,
maxDepth=4,
maxBins=32,
numTrees=3)

• Problem Specification Parameters
– Algorithm

– numClasses

– categoricalFeaturesInfo

• Stopping Criteria
– maxDepth

– minInstancesPerNode

– minInfoGain

• Tunable Parameters
– Impurity

Testing Model using MLlib

• testdata – dataset with many tuples

• predictions=model.predict(testdata.map(lamb
da x:x.features)

• labelsAndPredictions=testdata.map(lambda
lp:lp.label).zip(predictions)

Evaluation

• testErr=labelsAndPredictions.filter(lambda
(v,p) : v!=p).count() / float(testData.count())

• print(‘Test Error = ‘ + str(testErr))

• model.save(sc,”MyModelPath”)

• sameModel =
RandomForestModel.load(sc,”MyModelPath”)

K-means Clustering

• Most Commonly used Clustering algorithm

• partition n observations into k clusters in
which each observation belongs to the cluster
with nearest mean, serves as the model of the
cluster

• It works only with numerical attributes

Algorithm

• Runs iteratively

• Starts with initializing number of clusters and
the cluster center
– Assign data points to clusters

– Recompute cluster centre

– Repeat steps till error metric is reduced to a
threshold

Mllib package- clustering

• Kmeans input data:
– Vector
– To create vectors , numpy package could be used

from numpy import array

data = sc.textFile("data/mllib/kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x)

for x in line.split(' ')]))

• Train Model :

clusters = KMeans.train(

parsedData, 2,

maxIterations=10,

 runs=10,
initializationMode="random")

• Test Model

def error(point):

 center =
clusters.centers[clusters.predict(point)]

 return sqrt(sum([x**2 for x in (point -
center)]))

WSSSE = parsedData.map(lambda point:
error(point)).reduce(lambda x, y: x + y)

print("Within Set Sum of Squared Error = " +
str(WSSSE))

• # Save and load model

clusters.save(sc, "myModelPath")

sameModel = KMeansModel.load(sc,
"myModelPath")

MLlib

• Machine learning has to be easy and scalable
– Capable of learning from large datasets.

– Easy way to build machine learning applications.

Machine Learning Workflow

• Scalable -- Expandable (it should work even if
the data grows enormously)

• Machine learning pipeline components
– Feature Extraction

– Supervised Learning

– Model Evaluation

– Exploratory data analysis

ML workflow

• Why do we need ML workflow

Load Data

Extract features

Train Model

Evaluate

Text Classification

• Given text predict its topic

Problems with Mllib

Create many RDDs

retrieve words from text
convert it to features (new)

Explicit Zip
associate data point with features

Next Biggest Challenge

Input
Dataset

Hashing Tf (1000) Hashingtf(5000)

References

Books :

• Learning Spark: Lightning-Fast Big Data
Analysis by Holden Karau, Andy Konwinski,
Patrick Wendell & Matei Zaharia

Online Courses :

edx course - CS120x Distributed Machine
Learning with Apache Spark

