Machine Learning for Data Analysis

Ravitha Rajalakshmi N Asst Professor Dept of IT, PSG CT

Outline

- Introduction
- Machine Learning Workflow
- Case Study: Normal ML pipeline
- Difficulties (or) Challenges
- Hyperparameter Optimization
- AutoML
- Case Study : AutoML
- Research Challenges

Learning

A computer program is said to learn from Experience (Dataset) E with some class of Tasks T and Performance measure P if its performance at Tasks in T measured by P, improves with experience E.

Iterative Process

Regression: MSE

Classification: Binary_cross entropy

Model family of functions

$$Y = \sin(x)$$

$$Y = 4^* \times +!2$$

Can ML learn any function between input and output?

Linear Function

SVM

Non - Linear Function

NN SVM with RBF

Machine Learning Workflow

MNIST Dataset


```
      000
      001
      002
      003
      ...
      026
      027

      028
      029
      030
      031
      ...
      054
      055

      056
      057
      058
      059
      ...
      082
      083

      |
      |
      |
      |
      |
      |
      |

      728
      729
      730
      731
      ...
      754
      755

      756
      757
      758
      759
      ...
      782
      783
```


784 * 1

Algorithm and Model Comparison

Random Forest

Ensemble of multiple decision trees created using random set of features and random set of training examples

Sample Decision Tree

Day	Outlook	Temperature	Humidity	Wind	Play Tenni
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D_5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Tree for PlayTennis

How attributes are selected?

- Using Metrics
 - Information Gain
 - Entropy

Age	Income	Label
Middle	High	Yes
Middle	Low	Yes
Old	High	No
Old	Low	No

Random Forest classifier

Tree 1

Parameters vs Hyper-parameters

- Hyper-parameters need to be initialized before training a model.
- Model parameters are the properties of training data that will learn on its own during training by the classifier or other ML model.
 - Split points in Decision Tree

Parameter Selection is Intuitive

Well Crafted algorithms to choose parameters For all untried features:

Compute **Entropy**Choose the one with minimum entropy
Split the dataset based on feature

Repeat steps 2 - 3

Minimize difference between actual and predicted

Objective function is known

Hyper-parameter Selection is non - intuitive

Objective function is unknown

Hyper parameter Optimization

- Grid Search (Try all Configs) Boredom!!
- Random Search (Try your luck !!)

Hyperparameter Optimization

Grid Search

Min_sample_Split / Metric	2	10
Entropy	0.954	0.953
Information Gain	0.953	<0.953

Hyperparameters

- 1. n_estimators
- 2. max_features
- 3. n_jobs
- 4. random_state
- 5. min_sample_split

Random Search

Is there a different approach?

Is there an intelligent way of doing things??

What will a human do if task is unknown??

Use the past experience

AutoML

- Targets on the progressive optimization of machine learning
- ML for non ML experts
- It is used for
 - Analyse the importance of hyper-parameters
 - Development of software packages which can be instantiated in a data driven way.

Sequential Model based Optimization

- Bayesian Optimization
- Tree structured parzen estimator

Methods of AutoML

- Bayesian Optimization
- Meta Learning
- Transfer Learning
- Combinatorial Optimization

Bayesian Optimization

P(score | hyperparameters)

Popular Automated Machine Learning Tools

- Auto-sklearn
- TPOT
- Hyperopt
- Auto-WEKA
- Spearmint

MNIST Optimization using Hyperopt

The basic pipeline of every AutoML framework:

- Data Pre-processing
 - Converting the data to tabular form.
 - Splitting the test, train and validation data.
- Feature Engineering
 - Label or one hot encoders for categorical variables.
 - TF-IDF or Bag Of Words for text variables.
- Feature Stacking
 - Combining different features
- Decomposition
 - For high dimension data PCA is used.
 - For text data SVD is applied after converting text to sparse matrix.
- Feature Selection
 - Greedy Forward Selection
 - Greedy backward elimination
 - Using models like LASSO or Random Forest for implicit selection.
- Model selection and Hyper Parameter tuning
 - Grid Search
 - Random Search
 - Bayesian Search
- Evaluation of model

Neural Architecture Search

Neural Network

Y= sigmoid(W2, sigmoid(W1,X))

Neural Architecture Search

"Designing neural nets is extremely time intensive, and requires an expertise that limits its use to a smaller community of scientists and engineers. That's why we've created an approach called AutoML, showing that it's possible for neural nets to design neural nets."

-Google CEO

Basic Idea

- A neural network architecture can be described in a few parameters: The number of layers, the number of nodes.
- For a convolutional neural network (CNN), this is the number of filters and filter size.

FLOWCHART

Figure 1. Overview of Neural Architecture Search [71]. A controller RNN predicts architecture A from a search space with probability p. A child network with architecture A is trained to convergence achieving accuracy R. Scale the gradients of p by R to update the RNN controller.

Learning Raie: 0 Dropoui: 1

Learning Rate: 1 Dropout: 0

Learning Rate: 1 Dropout: 1

Learning Rate: 0 Dropout: 0

Fitness

Tools

- Auto keras (Open Source)
- AutoML (Auto Vision API in Google Cloud Platform)

Drawbacks on AutoML

- Works with pre-processed tabular / Image Data
- Limited support for feature selection

Content Overload!!

- https://www.ml4aad.org/
- http://simonwenkel.com/
- Siraj Raval Video on "Al that Creates Al"
- Acknowlegement : Onepanel for free GPU Credits

Thanks for your Support

Drop in your valuable feedback at nrr.it@psgtech.ac.in
Suggestions are welcome!!