Load MNIST dataset in keras
from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels)=mnist.load_data()
print(train_images.shape)
print(len(train_labels))
print(test_images.shape)
print(len(test_labels))
Network Architecture
from keras import models
from keras import layers
network=models.Sequential()
network.add(layers.Dense(512,activation='relu',input_shape=(28*28,)))
network.add(layers.Dense(10,activation='softmax'))
network.summary()
Compilation Step
network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
Preparing Image Data
# CONVERTING IT TO A ONE-DIMENSIONAL VECTOR
train_images=train_images.reshape((60000,28*28))
test_images=test_images.reshape((10000,28*28))
train_images=train_images.astype('float32')/255
test_images=test_images.astype('float32')/255
Preparing Labels
from keras.utils import to_categorical
# CONVERTING LABELS
train_labels=to_categorical(train_labels)
test_labels=to_categorical(test_labels)
Training the network
network.fit(train_images, train_labels, epochs=5, batch_size=128)
Testing the data
test_loss,test_acc=network.evaluate(test_images,test_labels)
print(test_loss)
print(test_acc)