
Apache Spark for Practical
Machine Learning

Why Distributed Computing ??

• Why can’t Traditional Tools (Matlab, R, Excel) cannot be used for
processing large datasets

– They typically run on single machine.
– Need more hardware to store / process data

• Scale – up the machine (large machine)
– Good Idea ! Actually it works faster
– But need Specialized hardware (expensive)
– Scaling can be done to a certain extent

• Scale out
– Many small machine connected them over network in distributed

setting
• Better alternative , as nodes can easily be added
• Commodity hardware
• Network Communication , Software Complexity

Cluster Computing Platforms

Hadoop vs. Spark

• Two main challenges with Hadoop
– Configuring Cluster
– Complex Programming model (MapReduce)

void map (String doc_id, String text)
for each word w in segment(text)
emit(w, "1");

void reduce (String word, Iterator
group):
int count = 0;
for each pc in group:
count += Int(pc);
emit(word, String(count));

Mapper

Reducer

JobConfiguration

Apache Spark
• Open source cluster computing engine

• Why spark for large scale machine learning?
– Fast iterative computation
– Communication primitive
– Provides API for scala, python and java
– Interactive shell
– Many high level libraries are available for building machine

learning pipelines

Components of Spark

• Spark core , RDD API – low level access to spark functionality

• MLlib, Streaming, GraphX , DataFrames API and SparkSQL – high
level operation (top of RDD API)

• In case of Hadoop, if a new functionality is required, it is added as a
tool where as in Spark, it is added as an package.

Resilient distributed Datasets

• RDD ~ data stored in Spark.
• Immutable.
• Collection of objects distributed across the cluster.
• In order to manipulate the data in RDD, two operations are typically

supported: actions and transformations.

Installation

Download recent version of spark

http://spark.apache.org/downloads.html

Version : 2.0.0
Prebuilt for Hadoop version : 2.6.0

http://spark.apache.org/downloads.html

Installation
Untar the Zip file and include it to /usr/local directory

mkdir /usr/local/SPARK_INSTALL
cp /Downloads/spark-2.0.0-bin-hadoop2.6.tgz /usr/local/SPARK_INSTALL
cd /usr/local/SPARK_INSTALL
tar xvzf /usr/local/SPARK_INSTALL
mv spark-2.0.0-bin-hadoop2.6.tgz spark

Open bashrc
nano ~/.bashrc

Include the environment variable
export $SPARK_HOME=/usr/local/SPARK_INSTALL/spark\
export $PATH=$PATH:$SPARK_HOME\bin

Source bashrc
source ~/.bashrc

Spark Essentials
• Interactive shells
 (In the installation directory of spark)

– bin/spark-shell (scala)
– bin/pyspark (python)

Spark Context

• Spark Program ~ Create a Spark Context object.
• Spark Context

– Access to the cluster.
• In the interactive shell, they are created automatically and available

in variable sc.
• Separate programs , then initialize SparkContext in the application.

 sc
 <pyspark.context.SparkContext object at 0x8a7398c>

• Master parameter determines which cluster to use

Master Description

local Run spark locally with one worker thread

local [k] Run spark locally with k worker threads

spark://HOST:PORT connect to spark standalone cluster
PORT depends on config (7077 by default)

mesos://HOST:PORT connect to spark Mesos cluster
PORT depends on config (5050 by default)

Spark Context

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf

from pyspark import SparkContext, SparkConf

conf = SparkConf().setAppName(appName)\
 .setMaster(master)

sc = SparkContext(conf=conf)

Spark Components

• Driver program – main Program that submits the job to the cluster

– Connects to cluster manager for resource allocation
– Acquire executors on cluster nodes – worker process which runs

computations and store data
– Send app code to executors
– Send tasks for executors to run

RDD Creation

• Calling parallelize method on spark context
 data = [1, 2, 3, 4, 5]
 distData = sc.parallelize(data)

• The elements of the collection are copied to form a distributed
dataset that can be operated on in parallel.

• Create RDD from local text file / HDFS / any external database
wordRDD=sc.textFile(“/path/to/ReadMe.md”)

• On parallelize, the data is divided into partitions and is stored at the
worker nodes.

• Each partition is typically of size 64 MB.
• Smaller partitions can be created by passing an additional

parameter to parallelize method

sc.parallelize(data,10)

Transformations & Actions

• Transformations are methods which creates new RDD from an

existing one.
• Transformations are lazy

– They are not computed immediately
• Actions computes value from RDD.
• Action causes execution to begin. Launch spark jobs and related

transformations are computed.

Typical Workflow in Spark

• Driver creates DAG (Directed Acyclic Graph) for work to be done
and sends it to the worker nodes in the cluster . Cluster will return
results to driver program

Data Lineage

Usage of Functions

• Lambda expressions, for simple functions that can be written as an
expression. (single statement functions)

• Local defs inside the function calling into Spark, for longer code.
• Top-level functions in a module.

 def f(x):
return x*2

g = lambda x : x*2

def myFunc(s):
 words = s.split(" ")
 return len(words)

 conf = SparkConf().setAppName(‘sample’)\
 .setMaster(‘local’)

sc = SparkContext(conf=conf)
sc.textFile("file.txt").map(myFunc)

• The closure is those variables and methods which must be visible
for the executor to perform its computations on the RDD

• Driver -> (tasks + closure(serialized format)) -> Executors
• Executors cannot send the value back to driver

Closures

Closures

• Define the scope and life cycle of variables and methods
when executing code across a cluster.

 data= [1,2,3,4]
counter = 0
rdd = sc.parallelize(data)
def increment_counter(x):

global counter
counter += x

rdd.foreach(increment_counter)
print("Counter value: ", counter)

• Spark supports two types of shared variables:
• broadcast variables, which can be used to cache a value in memory

on all nodes.
• accumulators, which are variables that are only “added” to, such as

counters and sums.

Accumulators

• Aggregate values from workers back to driver
• Only driver can access the value of accumulator
• for tasks, accumulators are write only
• used to count errors seen in RDD across worker nodes

Creating an accumulator with an initial value of 0
accum = sc.accumulator(0)

Accumulator can be manipulated either using += or add function
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))

Driver program can access the value
accum.value

Broadcast Variables

• Efficiently send large read – only values to all workers.
• Saved at workers for use in one or more operations.
• Sending read only lookup table to all nodes

Creating a broadcast variable

broadcastVar = sc.broadcast([1, 2, 3])

Accessing the broadcast variable

broadcastVar.value

[1, 2, 3]

User Interface

• Each driver program has a web UI, typically running on port 4040,
that displays information about running tasks, executors, and
storage usage.

• Simply go to http://localhost:4040 in a web browser to access this
UI.

MLlib

• Machine learning package available in Spark.
• It is shipped with Spark 0.8.
• Started as a project in UC Berkeley AMPLab.
• It consists of common learning algorithms and utilities including.

classification, regression, clustering, collaborative filtering,
dimensionality reduction.

MLlib

• Machine learning has to be easy and scalable
– Capable of learning from large datasets.
– Easy way to build machine learning applications.

 Classifier - Phases

Learning AlgorithmTraining Set

Validation set Apply Model

Model

Random Forest Classifier

• Ensemble of decision trees
• Decision Trees
– Simple means of inducing rules

• if (Age is x) and (income is y) then sanction loan

Sample Decision Tree

How attributes are selected ?

• Using Metrics
– Information Gain

– Entropy

Age

Age Income Label

Middle High Yes

Middle Low Yes

Old High No

Old Low No

Yes No

Middle Old

Entropy = 0

Income

? ?

High low

Entropy = 1

Random Forest classifier

• Problem with decision tree
– Overfits the training data

Outlook Temperature Play_Tennis

Tuple1

Tuple 4

Tuple 8

Temperature Wind Play_Tennis

Tuple 2

Tuple 5

Tuple 8

Tree 1

Tree 2

Train & Test Model

Tree 1

Tree 2

Tree 3

Test Tuple

Prediction 1

Prediction 2

Prediction 3

Final Prediction
Majority Voting

Data

• Mllib supports different datatypes (local)
– Vectors (columnar values)

• Sparse
• Dense

– LabeledPoint
• associate label with a vector
• label field ---- > double value
• features field ---- > Vector

from pyspark.mllib.regression import LabeledPoint
pos = LabeledPoint (1.0, [1.0,0.0,3.0])

MLlib Package- Radom Forest Classifier

• Random Forest Classifier
– pyspark.mllib.tree
– import RandomForest, RandomForestModel

• Train
– model = RandomForest.trainClassifier (Data,

numClasses =2,
CategoricalFeatureInfo{ Map(0->2,4>10)},
impurity=“gini”,
maxDepth=4,
maxBins=32,
numTrees=3)

• Problem Specification Parameters
– Algorithm
– numClasses
– categoricalFeaturesInfo

• Stopping Criteria
– maxDepth
– minInstancesPerNode
– minInfoGain

• Tunable Parameters
– Impurity

Testing Model using MLlib

• testdata – dataset with many tuples
• predictions=model.predict(testdata.map(lambda x:x.features)

• labelsAndPredictions=testdata\
 .map(lambda lp:lp.label)\
 .zip(predictions)

Evaluation

• testErr=labelsAndPredictions.
.filter(lambda (v,p) : v!=p).count()/float(testData.count())

• print(‘Test Error = ‘ + str(testErr))

• model.save(sc,”MyModelPath”)
• sameModel = RandomForestModel.load(sc,”MyModelPath”)

MLlib

• Machine learning has to be easy and scalable
– Capable of learning from large datasets.

– Easy way to build machine learning applications.

Machine Learning Workflow

• Scalable -- Expandable (it should work even if the data grows
enormously)

• Machine learning pipeline components
– Feature Extraction
– Supervised Learning
– Model Evaluation
– Exploratory data analysis

ML workflow

• Typical ML workflow

Load Data

Extract features

Train Model

Evaluate

Text Classification

• Given text predict its topic

Main Challenges

• RDD representation
– RDD is immutable
– Adding new fields is not possible
– Creation of more RDDs

• Process of feature extraction is complex
– iterative process
– Workflow is not generally shared
– Creates problem during Production environment

• ML Tuning
– Best Model
– Parameter Tuning
– Validations

ML Pipeline Concepts

• DataFrame (RDD representation)
• Transformer

– Feature Extractors
– Classifiers

• Estimator
– Models

• Pipeline
– Represents the workflow

Text Processing

• Split each document’s text into words.
• Convert each document’s words into a numerical feature vector.
• Learn a prediction model using the feature vectors and labels.

 ML workflow is pipeline which contains
sequence of pipeline stages

Transformer and Estimator

• Each Pipeline Stage is either transformer or estimator
• Transformer typically accepts a data frame and returns a new

dataframe with added columns ~ transform()
• Estimator accepts a data frame and provides a transformer ~ fit()

 Identical feature processing steps for both training and test
data

DataFrame

• df = spark.createDataFrame([(0, "a b c d e spark", 1.0),
 (1, "b d", 0.0),

 (2, "spark f g h", 1.0),
 (3, "hadoop mapreduce", 0.0)] , ["id", "text",

"label"])

tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),

outputCol="features")
lr = LogisticRegression(maxIter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

 model = pipeline.fir(df) # training
 selected = model.transform(test) # add a new column prediction

ML Tuning

• Find the best models (or) parameters for given task.
• Tuning

– Featurization
– Estimator

Data set Tokenizer

Hashing TF(100)

Hashing TF(1000)

Logistic Regression

NumIterations 10 NumIterations 100

ML Evaluators

• Cross Validator / TrainValidationSplit
• Requires

– Estimator (pipeline)
– Parameter Grid
– Evaluator

paramGrid = ParamGridBuilder() \
.addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
.addGrid(lr.regParam, [0.1, 0.01]) \ .build()

crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(), numFolds=2)

References

Books :
• Learning Spark: Lightning-Fast Big Data Analysis by Holden

Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia
Online Courses :
edx course - CS120x Distributed Machine Learning with Apache

Spark

Web Resources:
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/quick-start.html

http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/quick-start.html

