Apache Spark for Practical
Machine Learning

Why Distributed Computing ??

 Why can’t Traditional Tools (Matlab, R, Excel) cannot be used for
processing large datasets

— They typically run on single machine.
— Need more hardware to store / process data

e Scale - up the machine (large machine)
— Good Idea ! Actually it works faster
— But need Specialized hardware (expensive)
— Scaling can be done to a certain extent

Disk

e Scale out

— Many small machine connected them over network in distributed
setting

 Better alternative , as nodes can easily be added
« Commodity hardware
* Network Communication , Software Complexity

Cluster Computing Platforms

2004 2010
MapReduce paper Spark paper

2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level

2006
Hadoop @ Yahoo!

Hadoop vs. Spark

« Two main challenges with Hadoop
— Configuring Cluster
— Complex Programming model (MapReduce)

void map (String doc_id, String text) Mapper]
for each word w in segment(text)
emit(w, "1");

void reduce (String word, Iterator
group):

int count = 0;

for each pcin group:

count += Int(pc);

emit(word, String(count)); JobConfiguration]

S

Reducer]

SﬁAbwf’gApache Spark

« Open source cluster computing engine

« Why spark for large scale machine learning?
— Fast iterative computation
— Communication primitive
— Provides API for scala, python and java
— Interactive shell

— Many high level libraries are available for building machine
learning pipelines

Components of Spark

Spark core , RDD API — low level access to spark functionality

MLlIlib, Streaming, GraphX , DataFrames AP| and SparkSQL — high
level operation (top of RDD API)

In case of Hadoop, if a new functionality is required, it is added as a
tool where as in Spark, it is added as an package.

Resilient distributed Datasets

e RDD ~ data stored in Spark.
« Immutable.
» Collection of objects distributed across the cluster.

* In order to manipulate the data in RDD, two operations are typically
supported: actions and transformations.

Installation

Download recent version of spark

http://spark.apache.org/downloads.html

Version : 2.0.0
Prebuilt for Hadoop version : 2.6.0

http://spark.apache.org/downloads.html

Installation

Untar the Zip file and include it to /usr/local directory

mkdir /usr/local/SPARK_INSTALL

cp /Downloads/spark-2.0.0-bin-hadoop2.6.tgz /usr/local/SPARK INSTALL
cd /usr/local/SPARK INSTALL

tar xvzf /usr/local/SPARK_ INSTALL

mv spark-2.0.0-bin-hadoop2.6.tgz spark

Open bashrc
nano ~/.bashrc

Include the environment variable
export $SPARK _HOME=/usr/local/SPARK INSTALL/spark\
export SPATH=3$PATH:$SPARK_ HOME\bin

Source bashrc
source ~/.bashrc

Spark Essentials

 Interactive shells
(In the installation directory of spark)
— bin/spark-shell (scala)
— bin/pyspark (python)

Spark Context

« Spark Program ~ Create a Spark Context object.
« Spark Context
— Access to the cluster.

* In the interactive shell, they are created automatically and available
In variable sc.

« Separate programs , then initialize SparkContext in the application.

SC
<pyspark.context.SparkContext object at 0x8a7398c>

« Master parameter determines which cluster to use

waster |besciption

local Run spark locally with one worker thread
local [k] Run spark locally with k worker threads
spark://HOST:PORT connect to spark standalone cluster

PORT depends on config (7077 by default)

mesos://HOST:PORT connect to spark Mesos cluster
PORT depends on config (5050 by default)

Spark Context

Import org.apache.spark.SparkContext
Import org.apache.spark.SparkConf

from pyspark import SparkContext, SparkConf

conf = SparkConf().setAppName(appName)\
.setMaster(master)

sc = SparkContext(conf=conf)

Spark Components

Worker Node

Executor

Driver Program

SparkContext

e

Cache

Task

Cluster Manager

—>
/ Task

1

)

Worker Node l

Executor

Cache

—| | Task

Task

« Driver program — main Program that submits the job to the cluster

— Connects to cluster manager for resource allocation

— Acquire executors on cluster nodes — worker process which runs
computations and store data

— Send app code to executors
— Send tasks for executors to run

RDD Creation

« Calling parallelize method on spark context
data =[1, 2, 3, 4, 5]
distData = sc.parallelize(data)

* The elements of the collection are copied to form a distributed
dataset that can be operated on in parallel.

» Create RDD from local text file / HDFS / any external database
wordRDD=sc.textFile(*/path/to/ReadMe.md")

On parallelize, the data is divided into partitions and is stored at the
worker nodes.

Each partition is typically of size 64 MB.

Smaller partitions can be created by passing an additional
parameter to parallelize method

sc.parallelize(data,10)

Transformations & Actions

Transformations are methods which creates new RDD from an
existing one.

Transformations are lazy
— They are not computed immediately
Actions computes value from RDD.

Action causes execution to begin. Launch spark jobs and related
transformations are computed.

Typical Workflow in Spark

» Driver creates DAG (Directed Acyclic Graph) for work to be done
and sends it to the worker nodes in the cluster . Cluster will return
results to driver program

8

Driver Program /

Worker Machine

Worker Machine

Data Lineage

® & & o

Execution e
AL | | | !
i ' i |
____' ___' ___t___ llogLinesRDD
e
?).Comp mosgsasspamemmeoms
: i | | |
|_' i J | :
_ | | | :errorsRDD
R\ Gl ST
(;Omp e & | e
& e —
M i ! cleanedRDD
;.
A N“Aob

Driver

Usage of Functions

- Lambda expressions, for simple functions that can be written as an
expression. (single statement functions)

« Local defs inside the function calling into Spark, for longer code.
« Top-level functions in a module.

def f(x):
return x*2

g = lambda x : x*2

def myFunc(s):
words = s.split(" ")
return len(words)

conf = SparkConf().setAppName(‘sample’)\
.setMaster(‘local’)

sc = SparkContext(conf=conf)
sc.textFile("file.txt").map(myFunc)

transformation

description

map (func)

return a new distributed dataset formed by passing
each element of the source through a function func

filter (func)

return a new dataset formed by selecting those
elements of the source on which func returns true

flatMap (func)

similar to map, but each input item can be mapped
to 0 or more output items (so func should return a
Seq rather than a single item)

sample (withReplacement,
fraction, seed)

sample a fraction fraction of the data, with or without
replacement, using a given random number generator
seed

union(otherDataset)

return a new dataset that contains the union of the
elements in the source dataset and the argument

distinct ([numTasks]))

return a new dataset that contains the distinct elements

of the source dataset

transformation

description

groupByKey ([numTasks])

when called on a dataset of (x, V) pairs, returns a
dataset of (K, seq[V]) pairs

reduceByKey (func,
[numTasks])

when called on a dataset of (k, v) pairs, returns
a dataset of (k, w) pairs where the values for each
key are aggregated using the given reduce function

sortByKey ([ascending].,
[numTasks])

when called on a dataset of (x, v) pairs where
implements ordered, returns a dataset of (x, v)
pairs sorted by keys in ascending or descending order,
as specified in the boolean ascending argument

join(otherDataset,
[numTasks])

when called on datasets of type (x, v) and (X, w),
returns a dataset of (x, (v, w)) pairs with all pairs
of elements for each key

cogroup (otherDataset,
[numTasks])

when called on datasets of type (x, v) and (x, W),
returns a dataset of (x, seq[Vv], Seg[w]) tuples—
also called groupwith

cartesian(otherDataset)

when called on datasets of types T and u, returns a
dataset of (T, wu) pairs (all pairs of elements)

action

-

description

reduce (func)

aggregate the elements of the dataset using a function
func (which takes two arguments and returns one),
and should also be commutative and associative so
that it can be computed correctly in parallel

return all the elements of the dataset as an array at
the driver program — usually useful after a filter or

collect() other operation that returns a sufficiently small subset
of the data
count () return the number of elements in the dataset
‘ return the first element of the dataset — similar to
first() take(1)
return an array with the first n elements of the dataset
take(n) — currently not executed in parallel, instead the driver

program computes all the elements

takeSample (withReplacement,

fraction,

seed)

return an array with a random sample of num elements
of the dataset, with or without replacement, using the
given random number generator seed

action description
write the elements of the dataset as a text file (or set
of text files) in a given directory in the local filesystem,
saveAsTextFile(path) HDFS or any other Hadoop-supported file system.

Spark will call tostring on each element to convert
it to a line of text in the file

saveAsSequenceFile (path)

write the elements of the dataset as a Hadoop
gequenceFile in a given path in the local filesystem,
HDFS or any other Hadoop-supported file system.
Only available on RDDs of key-value pairs that either
implement Hadoop's writable interface or are
implicitly convertible to writable (Spark includes
conversions for basic types like Int, Double, 8tring,
etc).

countByKey ()

only available on RDDs of type (x, v).Returns a
"Map” of (x, 1Int) pairs with the count of each key

foreach(func)

run a function func on each element of the dataset —
usually done for side effects such as updating an
accumulator variable or interacting with external
storage systems

Closures

 The closure is those variables and methods which must be visible
for the executor to perform its computations on the RDD

» Driver -> (tasks + closure(serialized format)) -> Executors
« Executors cannot send the value back to driver

Closures

« Define the scope and life cycle of variables and methods
when executing code across a cluster.
data=[1,2,3,4]
counter =0
rdd = sc.parallelize(data)
def increment_counter(x):
global counter
counter += X
rdd.foreach(increment_counter)
print("Counter value: ", counter)

Spark supports two types of shared variables:

broadcast variables, which can be used to cache a value in memory
on all nodes.

accumulators, which are variables that are only “added” to, such as
counters and sums.

2 Accumulators

+ +e+

« Aggregate values from workers back to driver

« Only driver can access the value of accumulator

 for tasks, accumulators are write only

« used to count errors seen in RDD across worker nodes

Creating an accumulator with an initial value of O
accum = sc.accumulator(0)

Accumulator can be manipulated either using += or add function
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))

Driver program can access the value
accum.value

« AZ) Broadcast Variables

 Efficiently send large read — only values to all workers.
« Saved at workers for use in one or more operations.
« Sending read only lookup table to all nodes

Creating a broadcast variable
broadcastVar = sc.broadcast([1, 2, 3])
Accessing the broadcast variable
broadcastVar.value

[1, 2, 3]

User Interface

« Each driver program has a web Ul, typically running on port 4040,
that displays information about running tasks, executors, and
storage usage.

« Simply go to http://localhost:4040 in a web browser to access this
UL.

MLIib

« Machine learning package available in Spark.
 |tis shipped with Spark 0.8.
« Started as a project in UC Berkeley AMPLab.

* [t consists of common learning algorithms and utilities including.
classification, regression, clustering, collaborative filtering,
dimensionality reduction.

MLIib

« Machine learning has to be easy and scalable
— Capable of learning from large datasets.
— Easy way to build machine learning applications.

Classifier - Phases

‘ Training Set

Learning Algorithm

Elidation seJ

Apply Model

Random Forest Classifier

e Ensemble of decision trees

 Decision Trees

— Simple means of inducing rules
iIf (Age is xX) and (income is y) then sanction loan

Sample Decision Tree

Day Outlook Temperature Humidity Wind | Play Tenni
DI Sunmny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
DI1 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Decision Tree for PiayTennis

Sunny

Humidity

High Normal
No Yes

Overcast Rain

ves | wind_|

Strong Weak
/ \
No Yes

How attributes are selected ?

CENCTNCT

* Using Metrics
— Information Gain
— Entropy

Entropy =0

Middle High

Middle Low Yes
Old High No
Old Low No
High low

Entropy =1

Random Forest classifier

Tree 1l

* Problem with decision tree
— Overfits the training data

Tuplel

/ Tuple 4

Day Onutlook Temperature Humidity Wind | Play Tenni

DI Sumny Hot High Weak No Tuple 8 Tree 2
D2 Sumny Hot High Strong No
D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong| No
D7 Overcast Cool Normal Strong| Yes
DS Sumnv Mild High Weak No
DY Sumny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes a
D12 Overcast Mild High Strong Yes m PIay_Tennls
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No Tuple 2
Tuple 8

Train & Test Model

Tree 1 — . Prediction1

Final Prediction
Tree 2 — Prediction 2 ~— Majority Voting

Test Tuple

Tree 3 — Prediction3—

Data

Milib supports different datatypes (local)
— Vectors (columnar values)

* Sparse
* Dense
— LabeledPoint
« associate label with a vector
* |abel field ---- > double value
* features field ---- > Vector

from pyspark.mllib.regression import LabeledPoint
pos = LabeledPoint (1.0, [1.0,0.0,3.0])

MLIlib Package- Radom Forest Classifier

« Random Forest Classifier
— pyspark.mllib.tree
— Import RandomForest, RandomForestModel
 Train
— model = RandomForest.trainClassifier (Data,
numClasses =2,
CategoricalFeaturelnfo{ Map(0->2,4>10)},
impurity="gini”,
maxDepth=4,
maxBins=32,
numTrees=3)

* Problem Specification Parameters
— Algorithm
— numClasses
— categoricalFeaturesinfo
« Stopping Criteria
— maxDepth
— mininstancesPerNode
— mininfoGain
* Tunable Parameters
— Impurity

Testing Model using MLIib

« testdata — dataset with many tuples
« predictions=model.predict(testdata.map(lambda x:x.features)

» |abelsAndPredictions=testdata\
.map(lambda Ip:Ip.label)\
.Zip(predictions)

Evaluation

testErr=labelsAndPredictions.
filter(lambda (v,p) : vI=p).count()/float(testData.count())

print(‘Test Error = * + str(testErr))

model.save(sc,”"MyModelPath”)
sameModel = RandomForestModel.load(sc,”"MyModelPath”)

MLlIib

* Machine learning has to be easy and scalable
— Capable of learning from large datasets.
— Easy way to build machine learning applications.

Machine Learning Workflow

« Scalable -- Expandable (it should work even if the data grows
enormously)

* Machine learning pipeline components
— Feature Extraction
— Supervised Learning
— Model Evaluation
— Exploratory data analysis

ML workflow

* Typical ML workflow

Load Data

Extract features

Train Model

Evaluate

Text Classification

« Given text predict its topic

Features Label

Subject: Re: Lexan Polish? : .
Suggest McQuires #1 plastic ﬁ 1: about science

polish. It will help somewhat 0: not about science
but nothing will remove deep

scratches without making it \\
worse than it already is.

McQuires will do something... CTR. inches of rainfall
’ yoee

\

text, image, vector, ...

Tramning & Testing

Training

Given labeled data:
RDD of (features, label)

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic Label 0
polish. It will help...

Subject: RIPEM FAQ
RIPEM is a program which Label 1
performs Privacy Enhanced...

Learn a model.

Testing/Production

Given new unlabeled data:
RDD of features

Subject: Apollo Training
The Apollo astronauts also
trained at (in) Meteor...

Subject: A demo of Nonsense
How can you lie about
something that no one...

Use model to make predictions.

Main Challenges

« RDD representation
— RDD is immutable
— Adding new fields is not possible
— Creation of more RDDs

* Process of feature extraction is complex

— iterative process

— Workflow is not generally shared

— Creates problem during Production environment
« ML Tuning

— Best Model

— Parameter Tuning

— Validations

ML Pipeline Concepts

« DataFrame (RDD representation)
* Transformer
— Feature Extractors
— Classifiers
« Estimator
— Models
* Pipeline
— Represents the workflow

Text Processing

Split each document’s text into words.
Convert each document’s words into a numerical feature vector.
Learn a prediction model using the feature vectors and labels.

ML workflow is pipeline which contains
sequence of pipeline stages

Transformer and Estimator

« Each Pipeline Stage is either transformer or estimator

« Transformer typically accepts a data frame and returns a new
dataframe with added columns ~ transform()

« Estimator accepts a data frame and provides a transformer ~ fit()

Pipeline [2] [3] Logistic
(Estimator) Tokenizer | ™ | HashingTF | = Regression
Logistic
a = i = i == | Regression
Pipeline.fit Model
ipeineat Words Feature

text vectors

e Logistic

PipelineModel [Tokenizer] o HashingTF] =) | Regression

(Transformer) Model

e - 80080 ~=8

PipelineModel

.transform() Raw Words Feature Predictions
text vectors

ldentical feature processing steps for both training and test
data

DataFrame

« df = spark.createDataFrame([(0, "a b ¢ d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0)], ["id", "text",
"label")

tokenizer = Tokenizer(inputCol="text", outputCol="words")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),
outputCol="features")

Ir = LogisticRegression(maxiter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, Ir])

model = pipeline.fir(df) # training
selected = model.transform(test) # add a new column prediction

ML Tuning

* Find the best models (or) parameters for given task.

* Tuning

— Featurization

— Estimator

Hashing TF(100)

Data set

Tokenizer

Hashing TF(1000)

Logistic Regression

[Numlterations 10] [Numlterations 100]

ML Evaluators

« Cross Validator / TrainValidationSplit
* Requires

— Estimator (pipeline)

— Parameter Grid

— Evaluator

paramGrid = ParamGridBuilder() \
.addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
.addGrid(Ir.regParam, [0.1, 0.01]) \ .build()

crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(), numFolds=2)

References

Books :

e Learning Spark: Lightning-Fast Big Data Analysis by Holden
Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia

Online Courses :

edx course - CS120x Distributed Machine Learning with Apache
Spark

Web Resources:
http://spark.apache.ora/docs/latest/programming-quide.html
http://spark.apache.org/docs/latest/quick-start.html

http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/quick-start.html

