Active Learner Approach (ALA) for Teaching Programming related Subjects

Authors

Ms.N. Ravitha Rajalakshmi, Dr. B. Sangeetha, Assistant Professor (Sr. Gr.), Department of Information Technology, PSG College of Technology

Agenda

Introduction

Introduction

- Is the Journey of Learning in the current scenario a wholesome experience?
- Statistics Reported by AICTE 60%
- Observed Reasons
 - Skill Gap
 - Lack of Motivation
 - Fear for Learning
- Measures to alleviate the problem?

Strategies

- Strategies
 - Top-down approach
 - Bottom-up approach

Related Models

- Existing works are primarily grouped under four categories:
 - Learning model
 - Instructional Techniques
 - Learner Engagement
 - Pedagogy practices

Joy of computing using python

Deep Learning with Fast.Ai

The whole journey of learning can be effective only if the player/learner get his hands dirty with the game. He adds that it doesn't require the player to be aware of the rules of the game before playing.

- 1. Play whole game
- 2. Make the game worth playing
- 3. Work on hard parts
- 4. Play out of town
- 5. Play hidden game
- 6. Learn from team
- 7. Learn the game of learning

ALA is inspired from the use-modify-create model and it enhances it by adding learner engagement.

Use-Modify-Create Model (Lee et al, 2011)

Contributions

- Extensive survey with questionnaire to obtain suggestions from the learners
- Proposed ALA (Active Learner Approach)
- Identified **pedagogy tools** to support the approach

Survey Questionnaire

Fixed Response Questions

- 1. From your perspective, how can programming be taught? So that its effective
- 2. What is lacking in the bottom up teaching strategy?
- 3. Were you been able to transform or contribute to projects after taking the programming course?
- 4. Rate the modularity of the code written by you.
- 5. How do you rate your programming skills in the scale of 1 to 10? 1 indicates low and 10 indicates high
- 6. What was your stream in the 12th standard?

Open Ended Questions

- 7. What teaching software's (or) tools can be used to improve the teaching process (Scratch, Alice)?
- 8. Have you referred to any other websites (or) learning resources to improve your programming skills? If so, Mention them
- 9. What difficulties did you face during the programming course?
- 10. What style or coding standard do you employ?

Survey Responses for Question 2 (What is lacking in the bottom up teaching strategy)

Various Options

Responses for Effective Strategy

Rate the modularity of the code written by you?

72 responses

What difficulties did you face during the programming course?

72 responses

Nil	_
Difficult to find the logic	
Coding	
Recursion	
Writing optimized code	
Understanding the logics	
Complexity of solving problems	
It was difficult to understand the logic of the program.	
Find difficult in devising the logic for the code	
Nothing much	
I can able to understand the concept for the application given but can't approach how to proceed with the code.From beginning itself i m struggling with this. The logics for the code are somewat difficult for me to initiate.	·

Model Aspects

- Demonstration
 - Learn from Experience
- Evaluation
 - Learn from activity
- Learner Engagement
 - Learn from peers

Pedagogy Tools

a) Traditional Approach

b) Active Learning Approach

Conclusion

- Proposed ALA model will improve the TLP
- Motivate the students and make themselves engage in life long learning
- Equips them Industry-Ready

References

- Perkins, David.N. (2009) Making Learning Whole. San Francisco, CA: Jossey-Boss.
- Linderholm, Carl.E (1971) *Mathematics Made Difficult*. London: Butler & Tanner Ltd.
- Parasuraman, A.(1991) *Marketing Research 2nd Edition*. New Delhi:Addison-Wesley Publishing Company, Inc.
- Waite, J.(2017) *Pedagogy in Teaching Computer Science in Schools: A Literature Review. London.* Supplement to Royal Society Computing Education Project Report.
- Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015) Computing education in K-12 schools: A review. Global Engineering Education Conference (EDUCON), 2015 IEEE (pp. 543 551). IEEE.
- Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., et al. (2011) Computational thinking for youth in practice. *ACM Inroads*, 2(1),32–37.
- Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some empirical results for neo-Piagetian reasoning in novice programmers and the relationship to code explanation questions. Proceedings of the Fourteenth Australasian Computing Education Conference-Volume 123(pp. 77–86). Australian Computer Society, Inc

References

- Teague, D., & Lister, R. (2014c). Programming: reading, writing and reversing. *Proceedings* of the 2014 conference on Innovation & technology in computer science education(pp. 285–290). ACM.
- Grover, Pea, & Cooper. (2015). Designing for deeper learning in a blended computer science course for middle school students. *Computer Science Education*, 25(2), 199–237.
- Williams, L. A., & Kessler, R. R. (2000). All I really need to know about pair programming I learned in kindergarten. Communications of the ACM, 43(5), 108–114.
- Rubin, M. J. (2013). The effectiveness of live-coding to teach introductory programming. *Proceeding of the 44th ACM technical symposium on Computer science education* (pp. 651–656). ACM.

Thank you

